Sep
23

## Maximize Sharpe Ratio or Geometric Mean?

Markowitz was the first to advocate the focus on mean and variance and the selection of portfolios with the lowest risk for a target level of return, or the highest return for a target level of risk, read Markowitz Efficient Frontier stock portfolio for an example. However, to maximize

Hot posts:

15 Incredibly Stupid Ways People Made Their Millions

Online stock practice

Ino.com: Don't Join Marketclub until You Read This MarketClub Reviews

World Changing Mathematical Discoveries

Value at Risk xls

Random posts:

Handling Large CSV Files in R

First International Conference on Futures and other Derivative Markets

Numerical Integration Code

Online Swap Valuation

Spread option valuation

**Sharpe ratio**, or to maximize**Geometric mean**for optimized portfolio construction, that is the question. Both methods have found their positions in industry. But which one should we choose? there seems to be different opinions. Shared with you an interesting working paper**Geometric Mean Maximization: An Overlooked Portfolio Approach**, although the example doesn't suggest a clear answer to our question, it is still worth reading.Academics and practitioners usually optimize portfolios on the basis of mean and variance. They set the goal of maximizing risk-adjusted returns measured by the

**Sharpe ratio**and thus determine their optimal exposures to the assets considered. However, there is an alternative criterion that has an equally plausible underlying idea;**geometric mean maximization**aims to maximize the growth of the capital invested, thus seeking to maximize terminal wealth. This criterion has several attractive properties and is easy to implement, and yet it does not seem to be very widely used by practitioners. The ultimate goal of this article is to explore potential empirical reasons that may explain why this is the case.**The data, however, does not seem to suggest any clear answer, and, therefore, the question posed in the title remains largely unanswered: Are practitioners overlooking a useful criterion?****People viewing this post also viewed:**

Hot posts:

Random posts:

Takashi

2011/11/11 18:35 [Add/Edit reply] [Clear reply] [Del comment] [Block]

Here's an Excel spreadsheet that finds the investment weights in a Sharpe Optimal Portfolio

Pages: 1/1 1