Quantitative finance collector
C++ Matlab VBA/Excel Java Mathematica R/Splus Net Code Site Other
Jul 31

Non-stationary non-parametric volatility model

Posted by abiao at 09:43 | Paper Review | Comments(0) | Reads(4743)
A nice paper written by Han and Zhang (2012) in The Econometrics Journal.

We investigate a new non-stationary non-parametric volatility model, in which the conditional variance of time series is modelled as a non-parametric function of an integrated or near-integrated covariate. Importantly, the model can generate the long memory property in volatility and allow the unconditional variance of time series to be time-varying. These properties cannot be derived from most existing non-parametric or semi-parametric volatility models. We show that the kernel estimate of the model is consistent and its asymptotic distribution is mixed normal. For an empirical application of the model, we study the daily S&P 500 index return volatility using the VIX index as the covariate. It is shown that our model performs reasonably well both in within-sample and out-of-sample forecasts.


article, or working paper.


Add a comment
Emots
Enable HTML
Enable UBB
Enable Emots
Hidden
Remember
Nickname   Password   Optional
Site URI   Email   [Register]